
ENGR3370: Magnetic Levitation

Katya Donovan and Ava Lakmazaheri

May 8, 2019

1 Introduction

Magnetic levitation (MagLev) describes the suspension
of an object in air due only to the force of a magnetic
field. Given the inverse relationship of force to the dis-
tance between two magnets, there is no point where the
system will naturally levitate. To achieve this state, we
must control the force of an electromagnet, switching
polarities or alternating between on/off states.

2 System Modeling

2.1 System Overview

The system uses a solenoid with a controllable output
strength to levitate a set of permanent magnets. By
inputting a pulse width modulation (PWM), we can
control the average voltage of the solenoid. Thus, we
knew that a voltage should come out of our controller.

This voltage goes into the plant which in turn models
the effect of the solenoid on our system. Since we are
levitating a magnet, we are interested in its position and
thus chose position to be the output of the plant.

We can check this position of the magnet using a Hall
Effect sensor. Knowing that the Hall Effect sensor out-
puts a reading proportional to its voltage, which is in
turn proportional to the strength of the magnetic field,
we kept the input to the controller in units of sensor
value. We converted our desired position into these
sensor value units, which we fed into our closed loop
system.

2.2 Plant

Modeling the solenoid as an inductor and a resistor in
series, we can calculate its voltage using the following
equation:

V (t) = Rsol ∗ I(t) + Lsol ∗
dI(t)

dt
(1)

Converting this to the Laplace domain gives:

V (s) = Rsol ∗ I(s) + Lsol ∗ s ∗ I(s) (2)

This results in the following transfer function:

I(s)

V (s)
=

1

Rsol + Lsol ∗ s
(3)

Next, to calculate the force between the solenoid and
the permanent magnets, we looked at the energy of the
surrounding magnetic field.

Energy =
1

2
∗ L(x) ∗ I2 (4)

To determine the force generated by the magnetic field,
we found the derivative of its energy with respect to x.

FB =
E

dx
=

1

2
∗ L(x)

dx
∗ I2 (5)

The total inductance of the system is attributed to 1)
the constant inductance of the solenoid and 2) an induc-
tance that is generated by the interaction of the solenoid
and the magnet, which changes inversely proportional
to the distance between them.

L(x) = Lsol +
Lo ∗Xo

x
(6)

Thus, equation 5 simplifies to:

FB =
I2

2
∗ Lo ∗Xo

x2
= C ∗ I2

X2
(7)

where

C =
Lo ∗Xo

2
(8)

Since the force is not a linear equation, we linearized it
around the initial position and the initial current.

FB = C ∗ I2o
X2

o

+
2 ∗ C ∗ Io

Xo
∗ I − 2 ∗ C ∗ Io

X3
o

∗X (9)

Given that we care about position, we decided its ini-
tial value and found the corresponding initial current
that would put the system in equilibrium. Thus, we are
only modeling the system around these initial values.
We drew a free-body diagram and equated the force of
gravity to the force of the magnetic field.

FB = C ∗ I2o
X2

o

= FG = m ∗ g (10)

1



Thus for an initial position,

Io = Xo ∗
√

m ∗ g
C

(11)

In order to find the general effect of force on magnet
position, we refer back to the free body diagram.

m∗ dx2

d2t
= mg−C ∗ I2o

X2
o

+
2 ∗ C ∗ Io

Xo
∗ I− 2 ∗ C ∗ Io

X3
o

∗X

(12)
Using equation 10, this simplifies to

m ∗ dx2

d2t
= −2 ∗ C ∗ Io

Xo
∗ I +

2 ∗ C ∗ Io
X3

o

∗X (13)

When we convert this to the Laplace domain, we get
the following:

m ∗ s2 ∗X(s) − 2 ∗ C ∗ Io
X3

o

= −2 ∗ C ∗ Io
Xo

∗ I(s) (14)

Thus, we can find the transfer function from current to
position:

X(s)

I(s)
=

2 ∗ C ∗ Io ∗X2
0

2 ∗ C ∗ Io −X3
o ∗m ∗ s2

(15)

Finally, in order to find the transfer function of volt-
age to position, we multiply the two intermediate trans-
fer functions to get the following:

X(s)

V (s)
=

2 ∗ C ∗ Io ∗X2
0

2 ∗ C ∗ Io −X3
o ∗m ∗ s2

∗ 1

Rsol + Lsol ∗ s
(16)

This transfer function is the plant of our closed loop
system.

2.3 Measured Initial Conditions

We measured the inductance and resistance of our
solenoid with an LCR meter. After determining the
initial position of the permanent magnet, we used the
same tool to measure the initial inductance of the
solenoid/permanent magnet interaction.

Parameters Value
Initial Position 0.01 m

Initial Inductance 0.03362 H
Mass of Magnet 0.0009 kg

Inductance of Solenoid 0.03344 H
Resistance of Solenoid 25.4 Ohms

2.4 Pole-Zero Plot of Plant

The described plant has three poles on the real axis.
One pole is in the right half-plane, making the system
unstable. With our knowledge of the root locus, we re-
alized that a simple proportional controller would not

Figure 1: Open Loop Pole Zero Plot

make this system stable, because the two right-most
poles would become imaginary and unstable. Addition-
ally, an integral controller would add a pole to the ori-
gin, making the system at best marginally stable. How-
ever, a proportional-derivative (PD) controller adds a
zero to the system which, at high gains, could move our
unstable pole to the left half-plane.

In order to stabilize our system, we had to be inten-
tional about the placement of this zero. It had to be in
the left half-plane, but to the right of the middle pole in
order to move our right-most pole. We chose the zero
of the closed loop system to be -30 for these reasons.

Figure 2: Root Locus of Closed Loop System

According to our model, we should place a zero at -30
and implement a gain of 298000 (see Figure 3).

2.5 Validation of Model

Before implementing this model, we wanted to simulate
it to see if it behaved as we expected. We tested the sim-
ple case of using no controller, expecting the simulation
to go unstable. With Simulink, we were able to quickly

2



Figure 3: Expanded View of Root Locus

verify this result. Figure 4 shows that the magnet moves
in the direction of the solenoid with a driving voltage
and no controller. Since the model has no boundary to
capture how the solenoid acts as a physical stop to the
magnet, this instability goes off to infinity.

Figure 4: System Response to No Controller

3 Physical Setup

The solenoid is held by a laser-cut hardboard frame and
secured with 3D-printed PLA housing. A hall effect sen-
sor is situated directly under the electromagnet, mea-
suring strength of its magnetic field and outputting a
proportional voltage. An Arduino Uno is used to mea-
sure these values and control the voltage provided to
the solenoid.

Moving forward with this design, we recognized the
following physical constraints. First, the frame lacks
sturdiness and is susceptible to vibration if the magnets
oscillate. Second, there is a limited range in which the
Hall Effect sensor can give accurate readings. If perma-
nent magnets are placed in close proximity to the sensor
(approximately 5 mm), the sensor readings saturate (see
Figure 5). Third, our solenoid’s maximum output is 12

Volts, limiting the maximum strength of the magnetic
field. This means that if the permanent magnets drop
below a certain range, they cannot be recovered. Fi-
nally, we recognize the importance of speed in sending
commands to the solenoid. If the system is slow to up-
date, the magnets may have time to fall outside of the
controllable range. Given that the Arduino Uno has
limited processing speed, we must be especially careful
of adding print statements or computationally intensive
commands.

Figure 5: Effect of Distance on Hall Sensor Reading

4 Controller Implementation

Having experimentally determined a viable levitation
height given the strength of the solenoid, we were easily
able to map our target position to a Hall Effect sensor
value. This reading from the sensor became the input
of our controller.

In early tests, we realized that the sensor can un-
dergo huge changes in magnitude in a very short time,
resulting in choppy oscillations that destabilize the sys-
tem. To counteract this, we used a moving average to
smooth out the changes in the sensor reading. It is
this smoothed value that is used to calculate the error
from the target position and the resulting error rate of
change.

The gains that scale these quantities were based on
the previously described root locus. We placed our zero
at s = -30 on the real axis by setting kp = 30 and kd
= 1. In order to stabilize the system, the root locus
required the k gain to be as high as 298000. However,
when k reached such a large number, the system still
destabilized. We theorized that this might be because
the processing speed of the Arduino is not sufficiently
fast to respond to such large changes in output in a short
time. Alternatively, the high k gain may cause a lag that
is detrimental to our time-sensitive system. Thus, we
experimentally reduced k until we saw improved results.

3



We subtracted the output of our PD controller from
a baseline duty cycle of 50%. The reason for this step
is clearest when considering the system resting at its
target value. Here, there will be zero error and zero
error rate of change. However, if the output of the PD
controller gives a 0% duty cycle, the object will fall due
to its mass and the force of gravity. Thus we can see why
the electromagnet must provide a constant attracting
force to counteract gravity’s disturbance. The exact
duty cycle was calculated from our initial current I0
and the solenoid resistance.

To ensure a timely execution of these steps, we placed
the controller code in a loop that waits for a short
timed period before executing. Rather than using a
delay statement, this technique accounts for the execu-
tion time of the control code and mandates that each
loop has the same duration.

A complete version of the code can be found in Ap-
pendix A.

5 Performance

The system levitates successfully. If carefully situated,
the magnets can float for up to 50 seconds.

Qualitative: In every tested trial, the permanent mag-
nets spin quickly about the yaw axis. For this reason,
we ensured that the magnet stack was as symmetric as
possible. We also found that the system can correct
for some small disturbance both vertically and later-
ally. Often, vertical disturbances will be ”corrected”
into more lateral motion. To mitigate lateral forces, we
replaced some of the bottom permanent magnets with
a steel nut.

Quantitative: Because of the system’s issue with
speed, it was not possible to plot or export data as
the MagLev was operating. Thus collecting quantita-
tive data was quite challenging. In the future, we would
record videos of the operating MagLev with calipers in-
frame to measure the oscillation height and a range of
viable starting positions. We would also attempt to
measure the settling time after a disturbance, estab-
lishing a vertical and horizontal range of a corrected
position, as well as the force of the disturbance itself.
In sum, this data could have yielded interesting quanti-
tative results about the capacities of our MagLev.

6 Process Considerations

We began this project by implementing a bang-bang
controller. This allowed us to gain an intuition for an
appropriate initial height and how many magnets to
use. We also realized that the force of repulsion was
too strong for a stable system, and pivoted to alternat-
ing between on and off signals only.

Then we attempted another form of a PD controller.
We thought that we should use the sensor reading er-
ror to calculate what incremental change is needed in
the voltage, and alter the power of the solenoid accord-
ingly. This controller did not work, and we believed at
the time that this was due to amplifying the Hall sen-
sor voltages to match the voltage range of the solenoid.
However, we pivoted from this technique before imple-
menting the moving average filter, which may very well
have improved its performance.

We also considered subtracting the effect of the
solenoid from the Hall voltage in order to control for
our range of PWM inputs. We compared sensor read-
ings on a range of distances and solenoid duty cycles (as
in Figure 5) but found that this difference was negligi-
ble.

7 Areas of Improvement

If we had more time and foresight, we would have rig-
orously tested our model’s response to various inputs.
By measuring the system’s step response, we could have
verified the order of the system as well as its dominating
poles, further validating our model.

We realized late into the project that our amplifier
was broken and was not affecting our Hall sensor read-
ings. If we had amplified this signal, we could have
gotten smoother derivatives which would have helped
with the stability of the system and its response to dis-
turbances.

Lastly, and most importantly, we should have
recorded the data we collected throughout this experi-
ment for more quantitative results. This would reduce
the amount of time spent tuning the controller.

8 Conclusion

In the end, we implemented a proportional-derivative
controller that partially stabilized the system. Our
magnet could withstand small vertical disturbances and
would remain stable for a significant amount of time.

Team Member Contributions: 50/50

4



A Appendix

1 #define target 390 // Target hall effect sensor reading
2 #define filterFactor 5 // Number of samples in running average
3 #define dT 1 // PWM update interval, in milliseconds
4 #define hallPin 1 // Analog pin for Hall Effect sensor
5 #define in2 5
6
7 #define minPWM 0 // Minimum duty cycle (0V)
8 #define maxPWM 255 // Maximum duty cycle (12V)
9 #define baselinePWM 128 // Baseline duty cycle for low setting -

currently rounded midpoint of min and max PWM (6V)
10
11 int currentPWM = 0; // Current duty cycle to drive solenoid
12 int lastError = 0; // Last calculated error for derivative term
13 int lastSensorValue = 0; // Last calculated sensor value for running

average
14 signed int nextPIDCycle = 0; // For smooth response, fix the speed that

the control loop operates.
15
16 int k = 45.5;
17 float kp = 30.05*k;
18 float kd = 1*k;
19
20 int roundValue(float value) {
21 return (int)(value + 0.5);
22 }
23
24 void setup(){
25 pinMode(hallPin, INPUT);
26 Serial.begin(9600);
27 }
28
29
30 void loop() {
31 // Writing to the solenoid should happen at consistent time step. Here we

compare the current time to PID cycle wait time. If negative, the time
hasn’t passed yet!

32 if(0 <= ((typeof(gNextPIDCycle))millis() - gNextPIDCycle))
33 {
34 // Update time for next PID cycle
35 nextPIDCycle = millis() + dT;
36
37 // Update running average with current sensor reading
38 lastSensorValue = roundValue(((lastSensorValue * (filterFactor - 1)) +

analogRead(hallPin)) / filterFactor);
39
40 // Difference between current and expected values (for proportional term)
41 int error = target - lastSensorValue;
42
43 // Slope of the input over time (for derivative term). This is called

Derivative on Measurement, as opposed to the more normal Derivative on
Error. Used to reduce "derivative kick" when changing the set point, not
a huge deal at our frequency

44 int dError = error - lastError;

5



45
46 // Subtract output of PD controller from baseline to get PWM output
47 currentPWM = baselinePWM - roundValue((kp*error) + (kd*dError));
48
49 // Since analogWrite wraps values out of range, we need to constrain our

PWM between max and min
50 currentPWM = constrain(currentPWM, minPWM, maxPWM);
51
52 // Write PWM to solenoid
53 analogWrite(in2, currentPWM);
54
55 //Store for next calculation of dError
56 lastError = error;
57 }
58
59 //Wait for next PID update cycle... read the sensor value for filtering
60 else {
61 //Weighted average function takes previous samples, replaces one with the

current sensor value, and averages over the total
62 lastSensorValue = roundValue(((lastSensorValue * (filterFactor - 1)) +

analogRead(hallPin)) / filterFactor);
63 }
64 }

6


	Introduction
	System Modeling
	System Overview
	Plant
	Measured Initial Conditions
	Pole-Zero Plot of Plant
	Validation of Model

	Physical Setup
	Controller Implementation
	Performance
	Process Considerations
	Areas of Improvement
	Conclusion
	Appendix

