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1 Introduction

In order to solidify our knowledge at the end of Linearity II, we were interested in studying

the interplay of linear algebra with computational algorithms. In this report, we investigate

the mathematical formulation and application of gradient descent as an iterative optimization

algorithm in order to train artificial neural networks for image classification.

2 Artificial Neural Networks

Figure 1: Neural Network

Artificial Neural Networks (ANNs) are computa-

tional models capable of capturing complex rela-

tionships between inputs and outputs, with the abil-

ity to change their parameters to “learn” better

mappings for a given task. Common applications

of neural networks include pattern recognition and

image processing. For example, given a grayscale

value for each pixel in an image, a trained neural

network may be able to detect novel features and

effectively classify the difference between a dog and

a cat, even for picture it has never seen before!
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2.1 Basic Structure

As shown in Figure 1, this complex mapping system can be broken down into nodes and

connections. Since artificial neural networks are loosely based upon the biology of the brain,

nodes are referred to as neurons and their connections synapses.

Each neuron has an activation and a bias. Every synapse has a unique weight. In general

terms, these components decide how strongly a neuron fires and how it then influences the

neurons it is connected to.

It is further worth noting that neurons are grouped into layers. Any ANN contains up to

three types of layers: the input layer (for data entry), output layer (the result), and hidden

layers (for mapping). Note that any neuron will share synapses with every single neuron in

the following layer.

Figure 2: Neural Network Layers

We have introduced several terms without providing a clear description of the role they play

in the network. Understanding how to interpret activations, biases, and weights as well

as the behavior of hidden layers can be very challenging in abstraction. Here, we provide

an extended metaphor for a more intuitive explanation of how information flows through a

neural network.

2.2 The Chocolate Factor

In exciting local news, there is a chocolate festival coming to town! Luke and Leia are trying

to make a decision about how likely they are to attend. What factors will be influencing

their decision? What in turn decides those factors?
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Let us consider a simplified model, in which every person’s decision to attend this festival

depends only on their peers making similar decisions.

In this network, each neuron represents a person. Their activation is how likely they are to

attend the festival. The weight that corresponds with one person’s connection to another

has to do with how positively or negatively influenced they are by another person’s decision

to attend. For example, Luke really doesn’t want to go to the festival if Darth Vader is going

(a large negative weight connecting the two), but doesn’t really care whether or not Han

Solo attends (weight near zero). Likewise, assuming Leia is highly likely to go if Han Solo is

going and not go if Obi-Wan does not; they would both be connected with a high positive

weight.

Figure 3: Analogy Diagram

In addition to this, everyone has a personal bias on if they will attend. This factor is

more self-contained to the individual, for example, how much they love chocolate. If Leia

has a chocolate affinity, her probability of attending the festival is higher regardless. In

ANN terminology, this means her activation tends to be higher/the neuron is more likely to

fire.

Note that each neuron’s activation is fully decided by its bias plus the weighted sum of its

synapses. When an artificial neural network is created, the only controlled parameters are

the weights on each synapse and the bias of each neuron. The activations in place at any

time arise directly as a result of these numbers.

This model assumes only two layers: the output (Luke and Leia) and the input (Darth Vader,

Han Solo, and Obi-Wan). However, this system can get increasingly complex if we consider

what factors influence Darth Vader, Han Solo, and Obi-Wan’s decisions to attend. They
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each have personal activations, weights to a preceding layer of people, and biases. With this

metaphor, we can imagine an extremely complex neural network with hundreds of hidden

layers mapping who knows who and who likes who.

2.3 Image Classification

A more popular machine learning task is the classification of handwritten numbers. Each

neuron in the input layer corresponds to a pixel in the image whose activation is a grayscale

value. Hidden layers can be used to identify edges in the image and further detect features

such as lines, circles, curved edges, etc. These calculations come together to an output layer

of 10 neurons, where the activation of each neuron gives the probability that the input image

was the corresponding 0-9 digit.

With this real-life example, we can understand why an artificial neural network needs to be

trained. There is only one correct classification of a handwritten 5, and the system must

tweak its own parameters (i.e., its weights and biases) until it maps the input data to get

this correct value.

3 Backpropagation and Gradient Descent

So how do artificial neural networks (ANN) learn? When ANN makes decisions, each layer of

neurons interacts with the next to finally come to a “decision.” But how does it know what

values to give its weights, biases, and activations? One method is through backpropagation

and gradient descent. Backpropagation is a method of supervised learning for deep neural

networks. It needs three things:

1. An input and output dataset

2. An artificial neural network

3. A cost function

Backpropagation uses a method that consists of giving ANN data for which it already knows

what the output should be, figures out how well ANN did in finding the right output through

a cost function, computes the gradient of that cost function, and uses the gradient descent

to make tweaks to the weights and biases of ANN. This learning is supervised because ANN
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is learning based on already known data, and a program actively makes decisions on how it

should change based on that known data.

3.1 Gradient

Gradient

Definition 1. Given a function F (x, y, z) the gradient of F is:

∇F (x, y, z) =
∂F

∂x
ı̂ +

∂F

∂y
̂ +

∂F

∂z
k̂

The gradient of a function points in the direction of steepest ascent. It indicates in which

direction to go in to maximize the increase in the function. Gradient descent is simply the

negative of gradient ascent. It is useful for backpropagation because once the cost function

is computed, gradient descent indicates how to change all of the values to maximize the

decrease of the cost function.

3.2 Notation and Activation calculation

3.2.1 Notation

To explain the math behind backpropagation, notation to describe all of the neurons, weights,

and biases is necessary. Let’s use aLj to denote the jth neuron in the Lth layer.

5



Figure 4: Neural Network

We’ll use wL
jk to denote the weight connecting the aLj neuron to the aL−1k neuron and bLj to

denote the bias associated with the aLj neuron.

Figure 5: Simple Neural Network Notation

3.2.2 How to calculate the activation of a neuron

The ANN doesn’t store the values of each neuron, rather it remembers the values of all the

weights and biases and calculates the activation based on those values. Here is how an ANN
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calculates the activation of one of its neurons:

aLj = σ(wL
j1 ∗ aL−11 + ...+ wL

jk ∗ aL−1k + bLj )

First we find the weighted sum which is the sum of all the activations of the previous

layer, times the weights connecting those neurons to the neuron we’re evaluating plus the

bias associated with that neuron.

weighted sum = wL
j1 ∗ aL−11 + ...+ wL

jk ∗ aL−1k + bLj

We then apply the sigmoid function σ to normalize the weighted sum to a value between 0

and 1.

3.3 Cost function

The cost function tells the ANN how close its output values are to the expected one.

Cost Function

Definition 2. Given a dataset of inputs (in where n is the index of the input) and

outputs (yj where j is the index of the output) and all of the weights (wjk) and biases

(bLj ) in all of the layers of the ANN, the cost function runs through the ANN with the

inputs given and finds how well the ANN did. The function is:

C(w1
11, b

1
1, ..., w

L
jk, b

L
j ) = [(aL1 − y1)2, (aL2 − y2)2, ..., (aLm − ym)2]

Essentially, the cost function takes the square of the difference between the output layer

values and the expected output value. If the value of the cost function is large, the ANN did

poorly, if it is small, it did well.

3.4 Gradient Descent

We now have the cost function and all of the values of the weights and biases. We need to

find the gradient of the cost function. This will tell us how to change each weight and bias

value to reduce the cost function. Let’s take a simple example of a network with one node

in each hidden layer.
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Figure 6: Very Simple Neural Network

The value of the cost function in this case would be:

C = (aL − y)2

Let’s just consider the weight connecting aL and aL−1. Since the gradient descent tells us how

much we should change weights and biases, it is useful to think of it as how much changing w

affects C. In other words how big is ∂C
∂w

? We can’t find this number directly however. Below

is a tree of the intermediate steps we will need to go through.

Figure 7: Backpropagation Tree

First, let’s say that zL is the weighted sum such that:

zL = wL ∗ aL−1 + bL

Here are all the values we will need:

zL = wL ∗ aL−1 + bL

aL = σ(zL)
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C = (aL − y)2

The only values that directly affect C are aL and y. We can’t change y because it’s a fixed

value. We can’t change aL directly, however we can change it indirectly by changing zL. We

can’t change zL directly, but we can change wL and bL. So to find ∂C
∂wL we’ll need to see how

much changing wL changes zL and then how much changing zL changes aL and then finally

how much changing aL changes C. To summarize:

∂C

∂wL
=
∂zL

∂wL

∂aL

∂zL
∂C

∂aL

Using the values we found above, we can solve each partial derivative:

∂zL

∂wL
= aL−1

∂aL

∂zL
= σ′(zL)

∂C

∂aL
= 2(aL − y)

So the final solution is:
∂C

∂wL
= aL−1σ′(zL)2(aL − y)

∂C
∂wL represents how much we’ll want to change wL by the next time we run through all of

the data. This is the same thing as gradient descent. So we’ve found one of the values of

our gradient descent! We still need to find ∂C
∂bL

and ∂C
∂aL−1 .

We can find ∂C
∂bL

through the same process as with ∂C
∂wL simply replacing a few terms. The

terms that change are:
∂C

∂bL
=
∂zL

∂bL
∂aL

∂zL
∂C

∂aL

∂zL

∂bL
= 1

∂C

∂bL
= 1σ′(zL)2(aL − y)

Same thing again for ∂C
∂aL−1 :

∂C

∂aL−1
=

∂zL

∂aL−1
∂aL

∂zL
∂C

∂aL
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∂zL

∂aL−1
= wL

∂C

∂aL−1
= wLσ′(zL)2(aL − y)

Part of the gradient descent in this case can be represented as:

∇C =

[
∂C
∂wL

∂C
∂bL

]

Notice that we haven’t included ∂C
∂aL−1 because we don’t actually change aL−1 directly. This

is where the idea of backpropagation comes in. The only thing that can change aL−1’s value

is zL−1. And what changes zL−1 is wL−1, bL−1, and aL−2, etc... To find out all of the ways

we can change C we need to go backwards through our neural network.

Figure 8: 2 layered tree

For example to find ∂C
∂wL−1 we would go through ∂C

∂aL−1 :

∂C

∂wL−1 =
∂zL−1

∂wL−1
∂aL−1

∂zL−1
∂C

∂aL−1
=
∂zL−1

∂wL−1
∂aL−1

∂zL−1
∂zL

∂aL−1
∂aL

∂zL
∂C

∂aL

If we zoom back out to a full neural net with multiple neurons in each layer, the full gradient
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descent of the cost function can be expressed as:

∇C =



∂C1

∂wL
jk

+ ...+
∂Cj

∂wL
jk

∂C1

∂bLj
+ ...+

∂Cj

∂bLj
∂C1

∂wL−1
jk

+ ...+
∂Cj

∂wL−1
jk

∂C1

∂bL−1
jk

+ ...+
∂Cj

∂bL−1
jk

...

...



Each of the values in the gradient details how the next iteration of the ANN should change

its weights and biases. For example, wL
jk should change by the value of ∂C1

∂wL
jk

+ ...+
∂Cj

∂wL
jk

.

4 Implementation

Though the primary goal of this project was to develop a conceptual understanding of gra-

dient descent and backpropagation, our team was also excited to look in more detail about

the software implementation of training a neural network for image classification. Since this

was not a priority for us to develop from scratch, we downloaded existing Python code from

the free online book Neural Networks and Deep Learning. This program used a three layer

neural network to classify the MNIST handwritten digit data set.

The ANN has 784 neurons in the input layer (for a 28x28 pixel image), 30 neurons in the

hidden layer, and 10 neurons in the output layer (for a classification from 0-9). With these

components alone and 5000 images to train from, the system can autonomously transition

from randomly assigned weights and biases to a carefully tuned network with over 95 percent

correct classification.
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(a) MNIST Handwritten Digit

0 0.0006894
1 1.07414284e-05
2 9.92845911e-05
3 0.02830999
4 4.44267752e-05
5 2.98902237e-05
6 1.95348710e-06
7 0.99599903
8 0.00036898
9 0.00252773

(b) ANN Output Layer

Figure 9: Image Classifier

Figure 9 shows a sample image from the MNIST dataset and how the ANN represented it

via the activations of output layer neurons. Note that the activation for 7 is extremely high

in comparison to the other digits; the system classified this number correctly!

5 Video

We also made a video about this topic here: https://youtu.be/TzRnwc2RHgY

6 References
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